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1. THEOREM

This note establishes a connection between the rate of approximation of
certain monomials and diophantine approximation. Let a E C, Re(a) > 0.
Let dE fR. For 1~ p ~ 00 and large positive integers n, let

(

1 ) lip
en.p(a, d) = min f Ixna+d - P(xW dx .

deg(P)" n 0

Thus en,p(IX, d) is the error in best approximation in the Lpnorm of Xna+d
by polynomials of degree at most n. Let

H(a) = exp (( log I:: :1 dx).

In [5, Lemma 5.4], it was shown that

lim {en,ia, d)}l/n=H(a)
n~ 00

if Re(a»Oanda¢(O,I].

The purpose of this note is to clarify what happens if a E (0, 1). It turns
out that (at least for the case where d is an integer), the behaviour of
en,p(a, d) as n --+ 00 depends on how well a can be approximated by
rationals. Suppose d is an integer. If IX is rational, we see en,p(a, d) =°for
infinitely many n, while if a is irrational, we see en,p(a, d) > °for all n. If
a = 1, we see en,ia, d) =°for all large enough n, provided d is non-positive.

For each p E (0, 1) and real d, we let E(p, d) = {x E (0, 1): for infinitely
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many n, there exists J~ n satisfying Ix - (j - d)/nl < pn} and Ed =
UpEHO,I) E(p, d).

Note that if °< p < p' < 1, then E(p, d) c E(p', d). Further if Cd] is the
integer part and d' the fractional part of d, then every approximation
(j - d)/n to x yields an approximation ((j - [d]) - d' )/n to x and conver
sely. Consequently Ed=Ed" In particular, when d is an integer, Ed=Eo,
The latter is the set of numbers in (0, 1) which can be approximated by
rationals faster than a geometric sequence, Because of their exceptionally
strong approximation properties by rationals, the irrational elements of Eo
are all transcendental (see [2, pp. 158-161]).

THEOREM. Let ex E (0, 1), dE IR, 1~p ~ 00.

(i) lim sUPn ~ Cf) {en,p(ex, d)} lin = H(ex);

(ii) lim infn~ Cf) {en,p(ex, d)} lin = H(ex) Jl(ex, d),

where

Jl( ex, d) = inf{p: ex EE(p, d)}

=1

if ex E Ed

if ex;' Ed;

(iii) limn~ c>;){en,p(ex, d)}l/n = H(ex) iff ex;' Ed;

(iv) Edhas logarithmic dimension ~2 (and hence Hausdorff dimension
0). If d is an integer, Ed has logarithmic dimension 2.

2. PROOF OF THE THEOREM

We shall need some lemmas. Within the next three lemmas ex and dare
fixed. For each positive integer n, we let l(n) be the (eventually positive)
integer such that

I
l(n)-dl I J-dlAn = ex = min ex - -- .

n 0<;; j<;; n n

LEMMA 1. Let!l! = {n: nex + d is an integer}. Then

lim {en,2( ex, d)jAn} lin = H( ex).
n~Cf)

n ¢:l'

Proof Let n;'[f'. By the Gram formula [1, p. 196],

d) - - 1/2 nn I nex +d - J Ien 2(ex, - (2nex + 2d + 1) d . l'
, j ~ 0 nex + +}+
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Let t be the smallest integer larger than Idl. We see

_ 1 _ 1 n - I Irt - U- d)/n I
n log en i rt, d) = n L log (. d)/ + o( 1)

, j=t rt+j+ n

1 (1) n-t= flog -- dx + n - 1 L log Irt - (j - d)/n I+ 0(1 )
o rt+x j=l
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(1)

as 10g(I/(rt+x» is continuous in [0,1] and by the theory of Riemann
sums. Next if rt E «k - 1 - d)/n, (k - d)/n), monotonicity of log Ia - x I in
[0, rt) and (rt, 1] yields

r(k-I-d)jn k-2 ! U-d)!J log la-xl dx~n-I L log (1.---

(t - d)jn j = I n

I
(k - 2 - d)jn

~ log Irt - x I dx
(t-I-d)jn

f
(n-t-d)jn n-l \ U-d)1

log la-xl dx~n-I L log (1.---

(k-d)jn j=k+ 1 n

j
(n - t + 1 - d)jn

~ log Irt - xl dx.
(k + 1- d)jn

Hence, adding, we obtain

n - I I (j - d) I 1n - 1 L log rt - -- = f. log Irt - x I dx + o( 1).
j=l n 0

j#k-l,k

(2)

Here k depends on n, of course. Now one of (k - d)/n, (k - 1 - d)/n is
(/(n) - d)/n; the other is at least a distance of 1/(2n) from rt, and so for
either j=k-1 or j=k, we have

1

U-d)1n-Ilog rt--
n
- =O(n- 1 logn)=0(1).

Together with (1), (2) this yields for all n ff:l'

n- 1 Iogen2(1X, d)=f1log la-xI dx+n-1log 11X_I(n)-dl +0(1). I
, 0 rt+x n

It is also possible to deduce Lemma 1 from known results on con
vergence of Riemann sums for singular integrands.
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LEMMA 2. (i) liminf,,~ooJ~/n=J1(o:,d).

(.. ) I' Alin - 111 1m sUPn ~ 00 LJ n - •

(iii) limn ~ 00 J ~/n = 1 iff 0: ¢ Ed'

Proof. Part (i) is immediate from the definition of J1(0:, d), E(p, d), and
Ed' Part (ii) is immediate if 0: ¢ Ed' Suppose now 0: E Ed' For some infinite
sequence of positive integers, and some p E (0, 1),

A Il(n+ l)-d l(n)-dl= "+I~ 1 -Ann+ n

> In{l(n+ l)-I(n)} +d-l(n)1 n-I(n+ l)-I_ p".

Now if l(n) ~ l(n + 1), then for large n,

n{l(n+ l)-I(n)} +d-l(n)~d-l(n)<-1.

Further if l(n) < l(n + 1), then for large n,

n{l(n+ I)-l(n)} +d-l(n)~n+d-l(n» 1.

Thus

lim J~/l"tl)~ lim {n- l (n+l)-l_p,,}I/I"+I)=1.
n-..oo n-(tJ
neN nEN

Part (iii) follows from (i) and (ii). I
For p =2, parts (i), (ii), and (iii) of the Theorem now follow. For general

1~p ~ 00, one uses

LEMMA 3. (i) If 1~p ~ q ~ 00, then

(ii) e".oo(O:, d) ~ Ino: +dl e,,_ 1,1(0:,0: +d - I).

Proof. Part (i) follows from monotonicity of the Lp[O, I] norm [6,
pp. 16, 25, Theorems IQ-.-12(i)], in p.

(ii) Let Q(x) be a polynomial of degree ~n - 1, and let P(x) =
fo(mx +d) Q(u) du, so that P(x) is of degree ~n and P(O) =O. Let x E [0, 1].
Then

X"a.+d - P(x) = r{(no: + d) U"a.+d-l - P'(u)} du
o
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so

max IXnOC+d_p(x)l::::; Inex+dl fl IU(n-l)a+(oc+d-I)_Q(u)1 dUo
XE [0,1] 0

Then taking the infimum over all Q, the result follows. I
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For 1::::;p::::; 00, part (i) of the Theorem now follows. We prove (ii),
which is harder. If 2::::;p::::; 00, Lemma 3 yields

H( ex) J.l( ex, d) = lim inf{en,2( ex, d)} lin
n ~ a)

::::; lim inf{ en.p(ex, d)} lin
n~ a)

::::;lim inf{en _I,2(ex, ex +d-l)} lin = H(ex) J.l(ex, IJ. +d-1).
n~ a)

Similarly, if 1 ::::;p::::; 2, one obtains

H( ex) J.l( ex, d) ~ lim inf{en,p( ex, d) } lin ~ H( ex) J.l( ex, d - ex + 1).
n~ a)

We deduce

J.l(ex, d - ex + 1) ::::; J.l( ex, d) ::::; J.l( ex, d + IJ. - 1), (3)

and note that (ii) of the Theorem follows if ::::; can be replaced by = in (3).
To this end, let p > J.l( IJ., d - ex + 1). For infinitely many n, there exists i::::; n
such that

1

i-(d-ex+1)1ex- <pn
n

I ( 1) i- 1- d
l=> IJ. 1-;; - n < pn

I
i-1-dl n=> ex- < __ pn<pn-t,

n-1 n-1
n large enough.

We deduce IJ. EE(p, d) for any p > J.l(rx, d - ex + 1) so that J.l(ex, d)::::;
J.l( ex, d - ex + 1). Thus the first::::; in (3) may be replaced by =, and similarly
the second. This completes the proof of (ii) and (iii) of the Theorem if
1::::;p::::;oo.

Finally, we prove (iv) of the Theorem. Recall the following facts about
Hausdorff measures [4]. Let h: [0, a) --+ [0, (0) be monotone increasing,
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right continuous, and positive in (0, a) with h(O) = O. Then the h-measure
of Ec IR is

where d(BJ is the length of the interval B;. The Hausdorff dimension of E
is

inf{ 0:: h - m(E) = 0, h(t) = t lX
, 0: > O}

and the logarithmic dimension of E is

inf{y: h - m(E) = 0, h(t) = (log 1/t) - Y, y > O}

provided the set of such y is non-empty; if it I is empty, E is taken to have
logarithmic dimension 00. If E has finite logarithmic dimension, it has zero
Hausdorff dimension [4, Theorem 40].

PART (iv) OF THE THEOREM. (i) For any dE IR, Ed has logarithmic
dimension ~ 2.

(ii) For any integer d, Ed has logarithmic dimension 2.

Proof (i) Let pE(O, 1) and consider E(p,d). Let h(t)=(log 1/t)-2-.,
some e > O. For any positive integer k satisfying 2pk < 1,

00 n (" d "d )E(p, d) c U U }- _pn, } - + pn .
n=kj=O n n

Hence E(p, d) has a cover by intervals B; S.t. all d(BJ ~ 2pk and S.t.

00 00

L h(d(BJ) = L (n + 1) h(2pn)
i~ 1 n~k

00 00

~2 L nh(2n/k pn) = 2 Ilogp'I -2-e L n- 1
-.

n=k n=k

where p' = 21
/
k p. Since k is arbitrary, we deduce h - m(E(p, d)) = 0 for all

p E (0, 1). As we can write Ed=U~= 1 E(l- l/n, d), we have h - m(Ed) = O.
As e> 0 was arbitrary, it follows that Ed has logarithmic dimension ~2.

(ii) We apply Satz 4 in [3, p. 510J with s = 1. In the notation of this
paper, the result is

THEOREM 4. Let w(x) be positive and continuous for x ~ 1, and w(x) x 2

be monotone decreasing for x ~ 1. Further, let h(x) be positive, continuous
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(4)

and increasing for x > 0 with h(0+)= 0, and let h(x)/x be monotone for
x> 0 and h(2w(x)) x 2 be monotone for x ~ 1. Let

r.o h(2w(x)) x dx = 00.

Then h - m(M( w)) = 00, where M( w) = {x E [0, 1): for infinitely many n,
there existsj~n satisfying Ix-j/nl <w(n)}.

As Jarnik [3, p. 506, footnote 4] remarks, we need assume only that the
monotonicity conditions on w(x) hold for large x, since M(w) is indepen
dent of the behaviour of w(x) for small or moderate x. Similarly as h - m
depends only on the behaviour of h( t) as t ~ 0+, the monotonicity con
ditions on h(t) need hold only for small t. Let p E (0, 1) and define
w(x)=px, XE [1, (0) and h(t) = (log 1/t)~2, tE(O, 1). We see w(x) has the
requisite monotonicity properties for large x, h( t) has the requisite
monotonicity properties for small t, and that (4) holds. By the above
results, h - m(E(p, 0)) = h - m(M(w)) = 00 and hence h - m(Eo) = 00.

Hence Eo and so Ed for integral d, has logarithmic dimension 2. I
The proofs in [3] can probably be modified to show that Ed has

logarithmic dimension 2 for any real d.
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